Vyhledávání a Atlasu…

Pa – Protaktinium

V kategorii: ,

Protaktinium (chemická značka Pa, latinsky Protactinium) je třetím členem z řady aktinoidů, radioaktivní kovový prvek.

Základní fyzikálně-chemické vlastnosti

Protaktinium je radioaktivní kovový prvek stříbřitě bílé barvy, která se působením vzdušného kyslíku mění na šedavou. Hlavní izotop protaktinia 231Pa je α-zářič.

Ve sloučeninách se vyskytuje v mocenství od Pa+3 po Pa+5, přičemž nejstálejší jsou sloučeniny s oxidačním číslem Pa+5, které se svým chemickým chováním podobají sloučeninám tantalu nebo niobu.

Čistý kov lze připravit redukcí fluoridu protaktiničného kovovým baryem při teplotě kolem 1400 °C.

Historie

Jako první identifikovali protaktinium (jaderný izomer 234mPa s poločasem rozpadu1,17 minuty) Kasimir Fajans a O. H. Göhring jako produkt rozpadu uranu 238U. Pojmenovali jej brevium podle krátké doby života (latinsky brevis – krátký).

Za objevitele protaktinia jsou však obvykle označováni Otto Hahn a Lise Meitner z Německa a Frederick Soddy a John Cranston z Velké Británie, kteří roku 1918nezávisle na sobě oznámili objev izotopu 231Pa s mnohem delším poločasem rozpadu. Jméno prvku bylo změněno na protaktinium v roce 1949.

Výskyt, izotopy a využití

V zemské kůře se můžeme setkat pouze s velmi nízkými obsahy izotopu 231Pa, který je produktem radioaktivního rozpadu uranu. Poločas rozpadu tohoto izotopu je 32 760 let a proto i v nejbohatších uranových rudách nacházíme protaktinium v množství maximálně 1–3 ppm (mg/kg).

Z dalších izotopů stojí za zmínku např. 230Pa s poločasem rozpadu 17,4 dne nebo 233Pa s poločasem 26,975 dnů. Celkově je známo 30 izotopů protaktinia:

Izotop Poločas přeměny Druh rozpadu Produkt rozpadu
211Pa >300 ns α 207Ac
212Pa 5,1 ms α 208Ac
213Pa 5,3 ms α 209Ac
214Pa 17 ms α 210Ac
215Pa 14 ms α 211Ac
216Pa 150 ms α (98 %)/ ε (2 %) 212Ac/ 216Th
217Pa 3,6 ms α 213Ac
218Pa 113 μs α 214Ac
219Pa 53 ns α 215Ac
220Pa 0,78 μs α (100,00 %)/ ε (3,0×10−7 %) 216Ac/ 220Th
221Pa 5,9 μs α 217Ac
222Pa 2,9 ms α 218Ac
223Pa 5,1 ms α 219Ac
224Pa 846 ms α 220Ac
225Pa 1,7 s α 221Ac
226Pa 1,8 min α (74 %)/ ε (26 %) 222Ac/ 226Th
227Pa 38,3 min α (85 %)/ ε (15 %) 223Ac/ 227Th
228Pa 22,4 h ε (98,15 %)/ α (1,85 %) 228Th / 224Ac
229Pa 1,5 d ε (99,52 %)/ α (0,48 %) 229Th/ 225Ac
230Pa 17,4 d ε (92,20 %)/ β (7,80 %)/ α (3,2×10−3 %) 230Th/ 230U/ 226Ac
231Pa 32 760 r α (100 %) / SF (<3×10−10) 227Ac / různé
232Pa 1,32 d β / ε 232U / 232Th
233Pa 26,975 d β 233U
234Pa 6,70 h β 234U
235Pa 24,4 min β 235U
236Pa 9,1 min β 236U
237Pa 8,7 min β 237U
238Pa 2,28 min β 238U
239Pa 1,8 h β 239U
240Pa ? β 240U

První izolace oxidu protaktinia Pa2O5 byla uskutečněna roku 1927, kdy Aristid V. Grosse připravil přibližně 2 mg látky. Elementární kov byl získán roku 1934 termickým rozkladem jodidu protaktinia na elektricky zahřívaném kovovém vlákně ve vakuu:

2 PaI5 → 2 Pa + 5 I2

Největší množství čistého prvku bylo připraveno v roce 1961 pod patronací Úřadu pro atomovou energii Velké Británie. Bylo přitom zpracováváno asi 60 tun kalů zbylých po extrakci uranu z konžských rud. Separační proces sestával z dvanácti kroků (loužení kyselinami, kapalinová extrakce, separace na ionexech atd.) a výsledkem bylo 125 g kovového protaktinia o čistotě 99,9 %.

Uvádí se, že náklady na tento proces se pohybovaly kolem půl milionu amerických dolarů a získané množství protaktinia dodnes uspokojuje celosvětovou poptávku po tomto prvku. To jasně ukazuje i na to, že praktický význam protaktinia je zanedbatelný a jeho využití se omezuje pouze na speciální vědecké experimenty.

Budoucí význam protaktinia a především izotopů 233Pa a 234Pa záleží na rozšíření solných reaktorů. Z 233Pa vznikajícího záchytem neutronu jádrem thoria 232Th se jeho rozpadem získává izotop uranu 233U, který je perspektivní náhradou 235U.


Obecné
Název, značka, číslo Protaktinium, Pa, 91
Cizojazyčné názvy lat. Protactinium
Skupina, perioda, blok 7. perioda, blok f
Chemická skupina Aktinoidy
Koncentrace v zemské kůře 1×10−6 ppm
Vzhled stříbrný kov
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost (231,035 9)
Kovalentní poloměr 161 pm
Iontový poloměr (Pa3+) 106 pm
(Pa4+) 91 pm
(Pa5+) 88 pm
Elektronová konfigurace [Rn] 5f2 6d1 7s2
Oxidační čísla II, III, IV, V
Elektronegativita(Paulingova stupnice) 1,5
Ionizační energie
První 5,60 eV
Druhá 11,3 eV
Třetí 20,5 eV
Čtvrtá 36,4 eV
Látkové vlastnosti
Krystalografická soustava α-modifikace
čtverečná tělesně centrovaná
a= 388,9 pm
c= 341,7 pm
β-modifikace
krychlová
a = 381 pm
Molární objem 15,18×10−6 m3/mol
Teplota změny modifikace 1 170 °C (α → β) °C(1 443,15 K)
Mechanické vlastnosti
Hustota 15,374 g/cm3 (mod. α, 20 °C)
13,87 g/cm3 (mod. β)
Skupenství pevné
Termické vlastnosti
Tepelná vodivost 47 W⋅m−1⋅K−1
Součinitel délkové roztažnosti 99×10−7 (mod. α)
Molární atomizační entalpie 607,2 kJ/mol
Standardní molární entropieS° 51,9 J K−1 mol−1
Termodynamické vlastnosti
Teplota tání přibližně 1 600 °C (přibližně 1 600 K)
Teplota varu přibližně 3 300 °C (přibližně 3 300 K)
Specifické teplo tání 14,65 kJ/mol
Specifické teplo varu 460,5 kJ/mol
Měrná tepelná kapacita 0,121 J/g (25 °C)
0,099 J/g (plyn)
Elektromagnetické vlastnosti
Elektrická vodivost 5,56×106 S/m
Měrný elektrický odpor 177×10−9 Ωm
Teplota přechodu do supravodivého stavu 1,5 K
Magnetickéchování paramagnetický
Bezpečnost
Radioaktivní
Radioaktivní
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Pr
Thorium ≺ Pa ≻ Uran
0 0 hodnocení
Hodnocení příspěvku

Komentáře

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *

Přeložit »
0
Přispějte svým komentářemx